반응형
DataFrame(데이터프레임)
데이터 프레임은 다양한 형태의 데이터가 2차원으로 구성된 데이터 구조입니다. 행(케이스)과 열(변수)로 구성된 표와 같이 생겼습니다. 엑셀에서 이름 필드, 연령 필드, 성적 필드 등으로 이루어진 표와 같다고 보면 됩니다. 통계분석에 가장 많이 사용됩니다.
데이터 프레임 만들기
데이터 프레임을 생성하는 방법은 많습니다. 그 중에서 가장 많이 쓰이는 방법은 외부에서 만들어진 정리된 데이터를 R에서 읽어 들이는 방법입니다.
두 번째 방법은 벡터 형식의 자료를 묶어서 데이터 프레임을 만드는 것입니다. 아래 예제는 data.frame 함수를 이용하여 벡터 변수 name, age, sex, score를 하나로 묶어서 데이터 프레임 df를 만들어 보겠습니다.
> name <- c("유재석", "홍진영", "송가인", "강호동", "이영자", "김종민", "김연아")
> age <- c(24, 28, 31, 25, 27, 22, 29)
> sex <- c("남", "여", "여", "남", "여", "남", "여")
> score <- c(90, 80, 85, 75, 95, 80, 70)
> df <- data.frame(name, age, sex, score, stringsAsFactors = FALSE)
> df
name age sex score
1 유재석 24 남 90
2 홍진영 28 여 80
3 송가인 31 여 85
4 강호동 25 남 75
5 이영자 27 여 95
6 김종민 22 남 80
7 김연아 29 여 70
'stringsAsFactors = FALSE' 옵션 : 문자 데이터를 팩터로 변환시키지 않음
데이터 프레임 구조 보기
> str(df)
'data.frame': 7 obs. of 4 variables:
$ name : chr "유재석" "홍진영" "송가인" "강호동" ...
$ age : num 24 28 31 25 27 22 29
$ sex : chr "남" "여" "여" "남" ...
$ score: num 90 80 85 75 95 80 70
# 행 개수
nrow(df)
#> [1] 7
# 열 개수
ncol(df)
#> [1] 4
데이터 프레임 요약 보기
> df
name age sex score
1 유재석 24 남 90
2 홍진영 28 여 80
3 송가인 31 여 85
4 강호동 25 남 75
5 이영자 27 여 95
6 김종민 22 남 80
7 김연아 29 여 70
> summary(df)
name age sex score
Length:7 Min. :22.00 Length:7 Min. :70.00
Class :character 1st Qu.:24.50 Class :character 1st Qu.:77.50
Mode :character Median :27.00 Mode :character Median :80.00
Mean :26.57 Mean :82.14
3rd Qu.:28.50 3rd Qu.:87.50
Max. :31.00 Max. :95.00
데이터 프레임에서 데이터 추출
특정 위치(행과 열 기준)에 있는 데이터 추출하기
# name 열(변수) 데이터 추출
# 데이터프레임과 컬럼사이에 $기호가 사용됨
> df$name
[1] "유재석" "홍진영" "송가인" "강호동" "이영자" "김종민" "김연아"
# df$name 대신 아래처럼 사용 가능
> df[, "name"]
[1] "유재석" "홍진영" "송가인" "강호동" "이영자" "김종민" "김연아"
# 첫번째 열(name) 추출
> df[, 1]
> [1] "유재석" "홍진영" "송가인" "강호동" "이영자" "김종민" "김연아"
# 1열과 3열 추출
> df[, c(1, 3)]
name sex
1 유재석 남
2 홍진영 여
3 송가인 여
4 강호동 남
5 이영자 여
6 김종민 남
7 김연아 여
# name 열(변수)의 3번째 데이터 추출
> df$name[3]
[1] "송가인"
# 2~3번째 행 추출
> df[2:3, ]
name age sex score
2 홍진영 28 여 80
3 송가인 31 여 85
# 연령 변수의 데이터를 추출하여 평균을 구함
# na.rm = TRUE는 missing value를 제외하고 계산함
> mean(df$age, na.rm = TRUE)
[1] 26.57143
마이너스 기호(-)를 이용하여 데이터 제외
> df
name age sex score
1 유재석 24 남 90
2 홍진영 28 여 80
3 송가인 31 여 85
4 강호동 25 남 75
5 이영자 27 여 95
6 김종민 22 남 80
7 김연아 29 여 70
# 3번째 열 제외
> df[, -3]
name age score
1 유재석 24 90
2 홍진영 28 80
3 송가인 31 85
4 강호동 25 75
5 이영자 27 95
6 김종민 22 80
7 김연아 29 70
조건으로 데이터 추출
특정 조건에 맞는 데이터만 추출하는 경우 대괄호 안에 조건식을 입력하여 추출하거나 subset 함수를 이용하여 추출할 수 있습니다. 데이터가 매우 많을 경우에는 대괄호 안에 조건식을 입력하여 추출하는 것이 subset 함수를 이용하는 것 보다 더 빠릅니다.
대괄호 안에 조건식 입력하여 추출
# score가 90이상인 데이터 추출
> df[df$score >= 90, ]
name age sex score
1 유재석 24 남 90
5 이영자 27 여 95
# score가 90이상인 데이터의 name과 age만 추출
# 1:2 대신 c("name", "age")를 사용해도 됨
> df[df$score >= 90, 1:2]
name age
1 유재석 24
5 이영자 27
# 조건식과 출력 컬럼명을 변수에 입력하고 이를 활용
> score90 <- df$score >= 90
> cols <- c("name", "age")
> df[score90, cols]
name age
1 유재석 24
5 이영자 27
subset()을 이용하여 추출
# score가 90이상인 데이터 추출
> subset(df, score >= 90)
name age sex score
1 유재석 24 남 90
5 이영자 27 여 95
# score가 90이상인 데이터의 name과 age만 추출
subset(df, score >= 90, select = c("name", "age"))
> subset(df, score >= 90, select = c("name", "age"))
name age
1 유재석 24
5 이영자 27
# score가 90이상인 데이터에서 age와 sex만 제외하고 추출
> subset(df, score >= 90, select = -(age:sex))
name score
1 유재석 90
5 이영자 95
데이터 프레임의 데이터 수정
> df
name age sex score
1 유재석 24 남 90
2 홍진영 28 여 80
3 송가인 31 여 85
4 강호동 25 남 75
5 이영자 27 여 95
6 김종민 22 남 80
7 김연아 29 여 70
# 2번째 행에 있는 홍진영의 age를 29로 수정
> df$age[2] <- 29
> df
name age sex score
1 유재석 24 남 90
2 홍진영 29 여 80
3 송가인 31 여 85
4 강호동 25 남 75
5 이영자 27 여 95
6 김종민 22 남 80
7 김연아 29 여 70
# 3행에 있는 송가인의 score를 95로 수정
> df[3, "score"] <- 95
> df
name age sex score
1 유재석 24 남 90
2 홍진영 29 여 80
3 송가인 31 여 95
4 강호동 25 남 75
5 이영자 27 여 95
6 김종민 22 남 80
7 김연아 29 여 70
데이터 프레임 구조 수정
데이터 프레임 행열 추가
행 추가
> new_data <- list("김남준", 24, "남", 92)
> new_data
[[1]]
[1] "김남준"
[[2]]
[1] 24
[[3]]
[1] "남"
[[4]]
[1] 92
> df <- rbind(df, new_data)
> df
name age sex score
1 유재석 24 남 90
2 홍진영 29 여 80
3 송가인 31 여 95
4 강호동 25 남 75
5 이영자 27 여 95
6 김종민 22 남 80
7 김연아 29 여 70
8 김남준 24 남 92
> new_data <- data.frame(
+ name = "이지은",
+ age = 26,
+ sex = "여",
+ score = 93)
> new_data
name age sex score
1 이지은 26 여 93
> df <- rbind(df, new_data)
> df
name age sex score
1 유재석 24 남 90
2 홍진영 29 여 80
3 송가인 31 여 95
4 강호동 25 남 75
5 이영자 27 여 95
6 김종민 22 남 80
7 김연아 29 여 70
8 김남준 24 남 92
9 이지은 26 여 93
열 추가
# salary 열 추가
> df$salary <- c(220, 180, 250, 170, 220, 270, 250, 290, 210)
> df
name age sex score salary
1 유재석 24 남 90 220
2 홍진영 29 여 80 180
3 송가인 31 여 95 250
4 강호동 25 남 75 170
5 이영자 27 여 95 220
6 김종민 22 남 80 270
7 김연아 29 여 70 250
8 김남준 24 남 92 290
9 이지은 26 여 93 210
# 또는 cbind를 활용할 수 있음
> salary2 <- c(220, 180, 250, 170, 220, 270, 250, 290, 210)
> df <- cbind(df, salary2)
> df
name age sex score salary salary2
1 유재석 24 남 90 220 220
2 홍진영 29 여 80 180 180
3 송가인 31 여 95 250 250
4 강호동 25 남 75 170 170
5 이영자 27 여 95 220 220
6 김종민 22 남 80 270 270
7 김연아 29 여 70 250 250
8 김남준 24 남 92 290 290
9 이지은 26 여 93 210 210
salary3 <- c(220, 180, 250, 170, 220, 270, 250, 290, 210)
new_data <- data.frame(salary3)
> df <- cbind(df, new_data)
> df
name age sex score salary salary2 salary3
1 유재석 24 남 90 220 220 220
2 홍진영 29 여 80 180 180 180
3 송가인 31 여 95 250 250 250
4 강호동 25 남 75 170 170 170
5 이영자 27 여 95 220 220 220
6 김종민 22 남 80 270 270 270
7 김연아 29 여 70 250 250 250
8 김남준 24 남 92 290 290 290
9 이지은 26 여 93 210 210 210
데이터 프레임 행열 삭제
행 삭제
# 9행 삭제
> df <- df[-9, ]
> df
name age sex score salary salary2 salary3
1 유재석 24 남 90 220 220 220
2 홍진영 29 여 80 180 180 180
3 송가인 31 여 95 250 250 250
4 강호동 25 남 75 170 170 170
5 이영자 27 여 95 220 220 220
6 김종민 22 남 80 270 270 270
7 김연아 29 여 70 250 250 250
8 김남준 24 남 92 290 290 290
# score 가 80이하 삭제
> df <- df[!df$score < 80, ]
> df
name age sex score salary salary2 salary3
1 유재석 24 남 90 220 220 220
2 홍진영 29 여 80 180 180 180
3 송가인 31 여 95 250 250 250
5 이영자 27 여 95 220 220 220
6 김종민 22 남 80 270 270 270
8 김남준 24 남 92 290 290 290
열 삭제
# salary3 변수(열) 삭제
> df$salary3 <- NULL
> df
name age sex score salary salary2
1 유재석 24 남 90 220 220
2 홍진영 29 여 80 180 180
3 송가인 31 여 95 250 250
5 이영자 27 여 95 220 220
6 김종민 22 남 80 270 270
8 김남준 24 남 92 290 290
# 5열(salary)과 6열(salary2) 삭제
> df <- df[, -(5:6)]
> df
name age sex score
1 유재석 24 남 90
2 홍진영 29 여 80
3 송가인 31 여 95
5 이영자 27 여 95
6 김종민 22 남 80
8 김남준 24 남 92
기타
데이터 프레인 컬럼명 추출
> names(df)
[1] "name" "age" "sex" "score"
데이터 프레임 컬럼(열) 개수
# 컬럼의 갯수 보기 ncol == length
> ncol(df);
[1] 4
> length(df);
[1] 4
데이터 프레임 행 개수
> nrow(df)
[1] 6
데이터 프레임 연산
# 연산을 위해 숫자가 아인 컬럼 제거 (1열 name, 3열 sex)
> df2 <- df[, -c(1, 3)]
> df2
age score
1 24 90
2 29 80
3 31 95
5 27 95
6 22 80
8 24 92
# rowSums(), colSums(), colMeans(), rowMeans()
# 열 별 합계 구하기
> colSums(df2)
age score
157 532
# 열 별 평균 구하기
> colMeans(df2)
age score
26.16667 88.66667
# 행 별 합계 구하기
> rowSums(df2)
1 2 3 5 6 8
114 109 126 122 102 116
# 행 별 평균 구하기
> rowMeans(df2)
1 2 3 5 6 8
57.0 54.5 63.0 61.0 51.0 58.0
반응형
'R' 카테고리의 다른 글
[R 프로그래밍] ifelse() (1) | 2022.12.21 |
---|---|
[R 프로그래밍] If() (0) | 2022.12.21 |
[R 프로그래밍] 리스트(List) (0) | 2022.12.21 |
[R 프로그래밍] matrix(행렬) (0) | 2022.12.21 |
[R 프로그래밍] 벡터 (vector) (0) | 2022.12.21 |